Все новости

CRISPR/Cas научили править активность белков, атакуя «буквы» РНК. К «беззубому» белку Cas13 добавили деаминазу, которая исправляет цитозин (Ц) на урацил (У)

Группа ученых из США под руководством Фэна Чжана, одного из пионеров CRISPR/Cas-редактирования (он первым показал работу системы в клетках людей), расширила спектр возможностей CRISPR/Cas, научив ее исправлять последовательности РНК. Несколько лет назад им удалось заставить систему атаковать адениновые нуклеотиды, теперь на очереди цитозиновые. Такое редактирование позволяет изменять активность уже не генов, а кодируемых ими белков.
Cas13 (розовый), ведомый гидом (красный), редактирует РНК в клетке (синяя) Stephen Dixon
Описание
Cas13 (розовый), ведомый гидом (красный), редактирует РНК в клетке (синяя)
© Stephen Dixon

Систему CRISPR/Cas обычно используют для редактирования генома, т. е. ДНК. Однако ее можно адаптировать и к редактированию РНК, взяв Cas13, который связывается именно с РНК, вместо «девятого» CRISPR-ассоциированного белка. В 2017 году группа Фэна Чжана разработала систему REPAIR (RNA editing for programmable A to I (G) re-placement) — это система CRISPR/Cas13, в которой к «беззубому» Cas13 (dCas13, инактивированный белок, который способен лишь узнать последовательность, но не разрезать ее) «пришит» домен ADAR2. Этот домен используют для редактирования азотистых оснований, то есть замены одной «буквы» в тексте нуклеиновой кислоты на другую. Система REPAIR специализировалась на превращении аденинового нуклеотида (А) в инозиновые (аналоги гуаниновых, Г), но была бессильна против других типов нуклеотидов.

Читайте также: Исправляя А-Т на Г-Ц. Создан инструмент корректирования генома по буквам

Теперь группа Фэна Чжана взялась за редактирование цитозиновых нуклеотидов. Авторы работы получили необходимый белок дезаминазу из уже используемого ADAR2 путем контролируемого мутагенеза. Получившаяся в итоге дезаминаза содержала 16 мутаций и работала исключительно с двуцепочечной РНК. Так же, как и в системе REPAIR, ее прикрепили к dCas13. Новая система способна заменять цитозиновые нуклеотиды (Ц) на урациловые (У) и потому получила название RESCUE (RNA Editing for Specific C to U Exchange).

Следующим шагом стала проверка эффективности системы на культуре человеческих клеток. Целями для редактирования стали места на РНК, изменение которых должно привести к активности белков: в зависимости от аминокислот, находящихся в определенных участках белковой молекулы, на белок с большей или меньшей вероятностью навешивается «черная метка», приводящая к его расщеплению. Поэтому, изменяя последовательность РНК, можно изменять аминокислотный состав и влиять на стабильность белка в клетке и, следовательно, на его активность. В этих экспериментах процент отредактированных РНК составил от 5% до 42%.

Читайте также: Шторм корректировок. С помощью CRISPR-системы геном клетки человека переписали в 13 200 местах

Полученный ADAR2 сохранил способность дезаминировать аденозин с образованием инозита, поэтому в определенных условиях система RESCUE может превращать и Г в Ц, и А в И, однако эффективность этого процесса невелика — 15% и 5% соответственно. Кроме того, встречается и нецелевое редактирование, которое частично удалось снизить, еще раз «поколдовав» над ADAR2 с помощью контролируемого мутагенеза.

RESCUE расширяет инструментарий молекулярных биологов, поскольку позволяет вносить обратимые изменения в работу клетки: не «ломать» геном целиком, а точечно влиять на активность отдельных его продуктов. Обратимость и недолговременность подобных правок делает новый инструмент Чжана привлекательным для экспериментов по манипуляции профилем экспрессии генома человека в медицинских целях. 

Текст был подготовлен на мастерской научной журналистики летней школы «Летняя школа».

 Екатерина Рюмина