Все новости

На окончательную проверку существования "новой физики" отвели 1–1,5 года

Физик Андрей Голутвин, работающий на Большом адронном коллайдере, считает, что за это время существование лептонной универсальности или подтвердят, или опровергнут

МОСКВА, 23 марта. /ТАСС/. Опыты на Большом адронном коллайдере (БАК) в ближайшие полтора года окончательно подтвердят или опровергнут существование "новой физики" за пределами Стандартной модели. На ее существование, в частности, указывают недавно открытые аномалии в процессе формирования мюонов — тяжелой “разновидности” электронов. Об этом ТАСС рассказал один из участников эксперимента LHCb, главный научный сотрудник НИТУ "МИСиС" Андрей Голутвин.

"Нам нужно чуть больше данных, чтобы понять, что мы столкнулись с неким случайным совпадением, или же этот результат будет подтвержден в ходе наблюдений за другими распадами на LHCb или на других установках. Это станет первым прямым указанием на существование "новой физики" и позволит нам начать обсуждать, какие следующие эксперименты нужно проводить", – отметил ученый.

По его словам, речь идет о нарушениях так называемой универсальности лептонных взаимодействий. Это один из ключевых принципов Стандартной модели, он гласит, что все виды лептонов – электроны, мюоны и таоны – должны взаимодействовать с окружающим миром одинаково, с поправкой на различия в массе.

На рубеже веков физики CERN, работавшие с коллайдером LEP, обнаружили намеки на то, что это правило может нарушаться во время распада самых тяжелых субатомных частиц – топ-кварков. Результаты их измерений показали, что в ходе подобных реакций таоны возникали заметно чаще мюонов, что не соответствует предсказаниям Стандартной модели.

Несколько лет назад намеки на подобные аномалии обнаружили исследователи, работающие с одной из установок Большого адронного коллайдера – LHCb. Они наблюдали за распадами B-мезонов – экзотических частиц, которые состоят из двух кварков. Недавно представители LHCb заявили, что подтвердили результаты более ранних измерений и увеличили их статистическую значимость до уровня 3,3 сигма (1 случайная ошибка на тысячу попыток).

К подобным выводам специалисты пришли, изучая итоги крайне редких распадов B-мезонов. При этом подобные частицы превращаются в каон и мюонные или электрон-позитронные пары. Сравнив, как часто происходят подобные распады, участники LHCb обнаружили, что пары мюонов возникали значительно чаще, чем электроны и позитроны. Причем уровень этих расхождений полностью совпал с тем, который был зафиксирован в ходе предыдущих наблюдений за распадами B-мезонов.

На пороге "новой физики"

Выход на уровень в три сигма, по словам Голутвина, считается очень важным в физике частиц. Он показывает, что подобные аномалии в поведении частиц действительно могут претендовать на статус полноценного открытия. Для этого необходимо, чтобы статистическая значимость этих замеров достигла отметки в пять сигма. Ученый считает, что произойдет уже в ближайшие полтора года.

"Пока рано говорить об открытии – мы получили лишь первые указания на него. Нужно ждать подтверждения на других установках, в первую очередь, на японской фабрике B-мезонов Belle, а также в последующих опытах на LHCb и других экспериментах БАК. При этом, на мой взгляд, уже сейчас можно сказать, что это еще более важный и интересный результат, чем открытие бозона Хиггса", – пояснил Голутвин.

По его словам, достаточное количество данных, необходимых для окончательного подтверждения или опровержения этих указаний на нарушение лептонной универсальности, будут накоплены уже в ближайший год или полтора года. Если выводы физиков CERN подтвердятся, то это приведет, как считает Голутвин, к открытию первых свидетельств существования новых частиц, чье поведение нельзя описать положениями Стандартной модели.

"Если это открытие подтвердится, теоретикам придется поработать над объяснением подобного поведения лептонов. В частности, это может указывать на существование лептокварков, нового класса частиц за пределами Стандартной модели, чья масса будет настолько большой, что напрямую эти частицы нельзя обнаружить не только на БАК, но и на любом ускорителе частиц, который можно построить в ближайшие десятилетия", – отметил физик.

Изучение этих частиц и сил, управляющих их поведением, как подытожил ученый, потребует настоящей революции в теории и приведет к большим изменениям в стратегии развития физики элементарных частиц, в том числе и в том, как будут проводиться новые эксперименты и строиться последующие ускорители высоких энергий.