"Капуста, неверные мужья и зебра" состоит из разделов по типам задач: одни — логические, другие — геометрические, третьи — с предметами и т.д. Часть из них хорошо известны, но далеко не все. Также Алекс Беллос рассказывает об истории появления задач: некоторые придуманы много веков назад, а их формулировки менялись вместе с эпохой. В приведенном отрывке вместе с тремя головоломками даны решения. Для удобства они спрятаны в выпадающих текстовых блоках.
Когда в 1964 году Хьюберт Филлипс умер, в некрологе о нем в Times говорилось: "Можно сказать, что он создал больше развлечений на случай дождливого дня, чем любой другой писатель его времени". Помимо головоломок Филлипс составил тысячи кроссвордов, а также много писал о бридже, поскольку был профессиональным игроком и организатором турниров по бриджу в Англии. Кроме того, Филлипс написал множество юмористических стихотворений, более двухсот детективных романов и научный труд о футбольных тотализаторах: он также был популярным ведущим передачи Round Britain Quiz на BBC. Несмотря на то что Филлипс занимался разнообразной деятельностью, его вклад в культуру головоломок был очень весомым.
Филлипс первым опубликовал задачу, каждый персонаж которой знает то, чего не знает другой, но что скоро становится известным, и это, как мы увидим, делает его "дедушкой" задачи о дне рождения Шерил, которая обошла весь мир в 2015 году.
В самой ранней загадке такого типа идет речь об испачканных лицах. В ее простейшей версии два участника.
КЛУБ ГРЯЗНУЛЬ
Альберта и Бернадет дурачились в саду, а затем вошли в дом. Сестры видят лица друг друга, но не свое лицо. Отец, который видит обеих девочек, говорит им, что по меньшей мере у одной из них лицо в грязи, и просит дочек стать спиной к стене.
— Пожалуйста, пусть та из вас, у которой грязное лицо, сделает шаг вперед, — говорит он.
Ничего не происходит.
— Пожалуйста, пусть та из вас, у которой грязное лицо, сделает шаг вперед, — повторяет он.
Что произойдет и почему?
При решении подобных головоломок необходимо исходить из того, что все действующие лица, даже непослушные дети, поступают честно и обладают аналитическими способностями на уровне специалиста по логике.
Я расскажу вам, как решить эту головоломку. Мы знаем, что хотя бы у одной девочки грязное лицо, поэтому существует три возможных варианта: оно грязное либо у Альберты, либо у Бернадет, либо у обеих девочек одновременно.
Вариант 1. У Альберты лицо в грязи, у Бернадет чистое.
(Обратите внимание: это известно нам с вами, но не сестрам. Девочки знают только то, что могут видеть, и, соответственно, сделать из этого выводы.)
Давайте станем на место Альберты. Допустим, она смотрит на Бернадет и видит чистое лицо сестры. Зная, что у одной из них точно лицо в грязи, Альберта приходит к выводу, что испачкалась она. Затем отец Альберты просит выйти вперед ту дочь, у которой грязное лицо, но девочка не делает этого. Итак, мы можем сделать вывод, что этот вариант не верен, поскольку при условии, что Альберта ведет себя честно, она бы сделала шаг вперед.
Вариант 2. У Бернадет лицо в грязи, у Альберты чистое. Если поменять имена местами, аналогичная логическая аргументация исключает и этот сценарий.
Вариант 3. У обеих девочек лица в грязи.
Снова начнем с Альберты. Она смотрит на Бернадет и видит, что у сестры грязное лицо. Ей известно, что одна из них точно испачкалась. Альберта не может сделать никаких выводов о своем лице, так как в обоих случаях (грязное у нее лицо или чистое) утверждение, что "по меньшей мере у одной из сестер лицо в грязи", является истинным. И когда отец просит ту из девочек, у которой грязное лицо, выйти вперед, Альберта не делает этого. Здесь важно понимать, что она не выходит вперед потому, что не знает, есть у нее на лице грязь или нет, а не потому, что считает свое лицо чистым.
Аналогичным образом Бернадет видит грязное лицо сестры и приходит к выводу, что не может точно знать, что с ее собственным лицом. Когда отец просит выйти вперед ту дочь, у которой грязное лицо, Бернадет, соответственно, не делает этого.
Мы можем быть уверены в том, что этот вариант правильный, поскольку ни одна из девочек не делает ни шагу, когда отец первый раз просит их выйти вперед. Что же произойдет дальше?
Лицо Альберты либо грязное, либо нет. Однако она может исключить вероятность того, что у нее чистое лицо, потому что, если бы это было так, Бернадет, которая видит лицо сестры, пришла бы к выводу, что это у нее самой грязное лицо, и сделала бы шаг вперед еще тогда, когда отец попросил об этом в первый раз. Таким образом, Альберта приходит к выводу, что и ее лицо испачкано. По той же причине Бернадет приходит к аналогичному выводу насчет себя, и, когда отец второй раз повторяет свою просьбу, обе делают шаг.
В общем, происходит следующее: обе сестры видят испачканные лица друг друга, но не могут получить сведений о чистоте собственных лиц логическим путем. Однако понимание того, что другая сестра не может определить состояние своего лица, дает им новую информацию, позволяющую сделать вывод, что у обеих лица грязные. Отлично!
Хьюберт Филлипс опубликовал первую задачу об испачканных лицах в 1932 году, хотя подобные логические головоломки восходят к давним временам. Во французской салонной игре "Ущипнуть, не засмеявшись", датированной XVI веком, тот игрок, чьи пальцы в саже, оставляет пятна на лицах других участников. Смысл в том, чтобы засмеяться последним. Эта салонная игра упоминается в шедевре сатирической литературы французского писателя Франсуа Рабле "Гаргантюа и Пантагрюэль". В одном из ранних переводов этой книги на немецкий язык в XIX столетии описывается новый поворот игры: каждый участник должен ущипнуть соседа справа за подбородок. Два игрока натирают пальцы обожженным куском извести, следовательно, у двоих на лицах останутся ее следы. "Эти [игроки] выставляют себя на посмешище, — отмечает переводчик, — поскольку оба считают, что все смеются над кем-то другим".
Вскоре после того, как Филлипс опубликовал задачу об испачканных лицах, в книгах головоломок начали появляться ее различные варианты, которые привлекли внимание ученых, включая и американского космолога русского происхождения Георгия Антоновича Гамова (Джордж Гамов), одного из первых сторонников теории Большого взрыва, объясняющей происхождение Вселенной, а также автора замечательных научно-популярных книг. К их числу относится опубликованная в 1947 году One Two Three… Infinity ("Раз, два, три… бесконечность") — одна из моих любимых. Особенно примечательна она тем, что Гамов сам ее иллюстрировал.
В 1956 году Гамов консультировал авиастроительную компанию Convair, где в то время работал Марвин Стерн. Гамов и Стерн, работавшие на разных этажах, обратили внимание, что каждый раз, когда они отправляются в кабинеты друг друга, лифт почти всегда движется не в том направлении. Обсуждая математику, лежавшую в основе этой явно парадоксальной ситуации, они подружились и в результате решили совместно написать книгу Puzzle-Math (издана на русском языке: Гамов Г., Стерн М. Занимательные задачи. М.: Эдиториал УРСС, 2003), в которой есть следующая задача о трех лицах, испачканных сажей.
ЛИЦО В САЖЕ
Три пассажира поезда спокойно занимаются своими делами, как вдруг влетевший в окно дым от проходящего мимо локомотива покрывает их лица копотью. Один из пассажиров, мисс Аткинсон, отрывает глаза от книги, которую читает, и смеется. Другие пассажиры тоже смеются. Мисс Аткинсон, как и ее соседи по купе, считает, что у нее-то лицо чистое, а два других пассажира смеются потому, что видят испачканные сажей лица друг друга. Однако вскоре мисс Аткинсон озаряет, она достает носовой платок и вытирает лицо.
Мы можем исходить из того, что все трое ведут себя логично, но мисс Аткинсон более проницательна. Как она поняла, что ее лицо тоже испачкано сажей?
Мисс Аткинсон исходит из того, что ее лицо чистое, а два других пассажира смеются друг над другом. Предположим, один находится слева, а другой справа. Допустим, мисс Аткинсон становится на место одного из двух пассажиров, скажем, того, кто сидит слева. Этот пассажир видит пассажира справа, чье лицо испачкано сажей, и мисс Аткинсон, на лице которой сажи нет. Таким образом, пассажир слева смеется, потому что лицо пассажира справа испачкано сажей. Далее мисс Аткинсон размышляет так: тогда почему, по мнению пассажира слева, смеется пассажир справа? Пассажир слева исходит из того, что у него на лице нет сажи, тогда над кем же смеется пассажир справа? Единственная неприятная вероятность: он, должно быть, смеется над мисс Аткинсон! Сделав такой вывод, она немедленно достает носовой платок и вытирает лицо.
Книга "Занимательные задачи" Гамова не так популярна, как его другие книги, тем не менее в ней приводится одна из самых великолепных из когда-либо созданных логических задач. (Гамов говорил, что о ней ему рассказал великий советский астрофизик Виктор Амбарцумян.) Я немного перефразировал ее, заменив жен на мужей. Это трудная головоломка, но если вы следили за логикой двух предыдущих задач, то у вас есть все необходимое для ее решения. Даже если не справитесь самостоятельно, вы сможете проанализировать готовое решение и, не сомневаюсь, будете им восхищены.
40 НЕВЕРНЫХ МУЖЕЙ
В провинциальном городке 40 мужей изменяют своим женам. Каждая женщина знает, что у всех мужчин (кроме ее мужа) роман на стороне. Другими словами, каждая жена думает, что ее муж хранит ей верность, зная при этом, что остальные 39 мужчин изменяют женам.
Узнав о моральной деградации жителей города, столичный правитель издал указ, требующий наказать мужей за безнравственность. В указе сказано, что на следующий день после того, как женщина узнает о неверности мужа, она должна убить его в полночь (похоже, это ошибка перевода: в решении задачи, как и в двух изданиях книги на английском языке, идет речь о полудне — прим. ТАСС) на городской площади.
Что происходило после того, как правитель заявил: "Я знаю, что в вашем городе есть хотя бы один неверный муж, поэтому призываю вас принять меры"? Сначала головоломка кажется неправдоподобной, ведь жены-то уже знают о 39 неверных мужьях. Разве слова правителя о том, что "хотя бы" один муж изменяет своей жене, что-то меняют? Вне всякого сомнения, многое!
Если вы решили две последние головоломки (или хотя бы прочитали их решение), у вас есть почти все инструменты для решения этой. Возможно, вы обратили внимание на то, что эти задачи представляют собой разные вариации одной: в первой участвуют две девочки (имеется в виду задача 16), во второй — три пассажира, а в этой — 40 жен.
В действительности, если в задаче об испачканных лицах увеличить количество детей с двух до 40, заменить слова "у нее грязное лицо" на слова "у нее неверный муж", а слова "делает шаг вперед" на слова "убивает мужа", то она превратится в задачу о неверных мужьях.
В данной задаче есть один поистине ключевой момент: информация о том, что в городе по меньшей мере один муж изменяет своей жене, кажется на первый взгляд совершенно несущественной и даже не имеющей отношения к тому, что произойдет дальше, поскольку каждая женщина знает, что как минимум один муж нарушил супружескую верность. На самом деле все они знают о 39 негодяях. Тем не менее эти данные запускают поразительную последовательность событий.
Задача об испачканных лицах детей завершилась тем, что обе девочки, поняв, что их лица испачканы грязью, сделали шаг вперед. Но кульминацией этой головоломки становится настоящий фильм ужасов: 40 жен убивают своих мужей в одно и то же время.
Как мы получим такое решение? Представьте, что произойдет, если только один муж изменяет своей жене, а остальные 39 супругов хранят верность. Разумеется, жена единственного прелюбодея не знает, есть ли в городе другие неверные мужья, поскольку все женщины с самого начала думают, что их мужья хранят верность. Поэтому она считает, что все остальные мужья тоже верны своим женам. Узнав о неверности по меньшей мере одного мужа, женщина поймет, что это ее муж (потому что все остальные мужья верны своим женам, а значит, неверным может быть только ее муж), и убьет его на следующий день в полдень.
Теперь допустим, что изменников двое. Их жены (назовем их Агнес и Берта) знают только об одном неверном муже, так как обе убеждены в верности своих супругов. Агнес известно, что муж Берты не хранит верность своей жене, а Берта знает, что муж Агнес изменяет ей. Остальным 38 женам известно, что нарушают верность оба мужа — и муж Агнес, и муж Берты. Поскольку все знают о наличии по меньшей мере одного неверного супруга, новость о том, что как минимум один муж изменяет жене, не вызывает беспокойства ни у одного жителя города, и следующий день обходится без кровопролития.
Однако в тот же день после полудня Агнес и Берта приходят в замешательство. Агнес делает вывод (так же как ранее и мы с вами), что если муж Берты — единственный неверный супруг в городе, то Берта должна была убить его в полдень на следующий день после того, как узнала, что в городе есть по меньшей мере один неверный супруг. Тот факт, что Берта не убила своего мужа, наводит Агнес на мысль, что Берте известно о существовании второго неверного мужа. Кто же это может быть? Только ее собственный муж! В итоге на следующий день Агнес убивает своего мужа в полдень, в то же самое время, когда Берта (сделавшая аналогичный вывод) убивает своего супруга. Другими словами, при наличии двух неверных мужей оба будут убиты на второй день после сообщения, что в городе есть по меньшей мере один прелюбодей.
Теперь мы можем проанализировать ситуацию с тремя неверными мужьями. Каждая из жен будет думать, что неверных супругов двое, и после того, как минет второй день, а все мужчины останутся живы, жены все поймут. На третий день три женщины убьют своих супругов. Перейдем к сути. Если в городе 40 неверных мужей, ничего не произойдет до сорокового дня, когда наступит кровавая расплата.
Если бы правитель не упомянул о том, что в городе есть как минимум один неверный муж, приведенная выше логическая аргументация была бы невозможна, и массовое убийство на городской площади можно было бы предотвратить.